Automatic Differentiation Variational Inference

Deep Learning 2 – 2022

Wilker Aziz w.aziz@uva.nl

UNIVERSITY OF AMSTERDAM Institute for Logic, Language and Computation

• Deep probabilistic models: probability distributions parameterised by neural networks

- Deep probabilistic models: probability distributions parameterised by neural networks
- Objective:

- Deep probabilistic models: probability distributions parameterised by neural networks
- Objective: lowerbound on log-likelihood (ELBO)

- Deep probabilistic models: probability distributions parameterised by neural networks
- Objective: lowerbound on log-likelihood (ELBO)
 - cannot be computed exactly

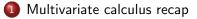
- Deep probabilistic models: probability distributions parameterised by neural networks
- Objective: lowerbound on log-likelihood (ELBO)
 - cannot be computed exactly we resort to Monte Carlo estimation

- Deep probabilistic models: probability distributions parameterised by neural networks
- Objective: lowerbound on log-likelihood (ELBO)
 - cannot be computed exactly we resort to Monte Carlo estimation
- But the MC estimator is not differentiable

- Deep probabilistic models: probability distributions parameterised by neural networks
- Objective: lowerbound on log-likelihood (ELBO)
 - cannot be computed exactly we resort to Monte Carlo estimation
- But the MC estimator is not differentiable
 - Score function estimator: applicable to any model

- Deep probabilistic models: probability distributions parameterised by neural networks
- Objective: lowerbound on log-likelihood (ELBO)
 - cannot be computed exactly we resort to Monte Carlo estimation
- But the MC estimator is not differentiable
 - Score function estimator: applicable to any model
 - Reparameterised gradients so far seems applicable only to Gaussian variables

Outline



Reparameterised gradients revisited

Multivariate calculus recap

Let $x \in \mathbb{R}^{K}$ and let $\mathcal{T} : \mathbb{R}^{K} \to \mathbb{R}^{K}$ be differentiable and invertible • $y = \mathcal{T}(x)$ • $x = \mathcal{T}^{-1}(y)$

Jacobian

The Jacobian matrix $J_{\mathcal{T}}(x)$ of \mathcal{T} assessed at x is the matrix of partial derivatives

$$J_{ij} = \frac{\partial y_i}{\partial x_j}$$

Jacobian

The Jacobian matrix $J_{\mathcal{T}}(x)$ of \mathcal{T} assessed at x is the matrix of partial derivatives

$$J_{ij} = \frac{\partial y_i}{\partial x_j}$$

Inverse function theorem

$$J_{\mathcal{T}^{-1}}(y) = (J_{\mathcal{T}}(x))^{-1}$$

The **differential** dx of x refers to an *infinitely small* change in x

The **differential** dx of x refers to an *infinitely small* change in x

We can relate the differential dy of $y = \mathcal{T}(x)$ to dx

The **differential** dx of x refers to an *infinitely small* change in x

We can relate the differential dy of $y = \mathcal{T}(x)$ to dx

• Scalar case $\mathrm{d} y = \mathcal{T}'(x)\mathrm{d} x = \frac{\mathrm{d} y}{\mathrm{d} x}\mathrm{d} x = \frac{\mathrm{d}}{\mathrm{d} x}\mathcal{T}(x)\mathrm{d} x$

where dy/dx is the *derivative* of y wrt x

The **differential** dx of x refers to an *infinitely small* change in x

We can relate the differential dy of $y = \mathcal{T}(x)$ to dx

• Scalar case $dy = \mathcal{T}'(x)dx = \frac{dy}{dx}dx = \frac{d}{dx}\mathcal{T}(x)dx$

where dy/dx is the *derivative* of y wrt x

Multivariate case

$$\mathrm{d} y = |\det J_{\mathcal{T}}(x)|\mathrm{d} x$$

the absolute value absorbs the orientation

```
We can integrate a function g(x)
by substituting x = T^{-1}(y)
```

$$\int g(\mathbf{x}) \mathrm{d}\mathbf{x}$$

We can integrate a function g(x)by substituting $x = T^{-1}(y)$

$$\int g(x) \mathrm{d}x = \int g(\underbrace{\mathcal{T}^{-1}(y)}_{x})$$

We can integrate a function g(x)by substituting $x = T^{-1}(y)$

$$\int g(x) \mathrm{d}x = \int g(\underbrace{\mathcal{T}^{-1}(y)}_{x}) \underbrace{|\det J_{\mathcal{T}^{-1}}(y)| \mathrm{d}y}_{\mathrm{d}x}$$

We can integrate a function g(x)by substituting $x = T^{-1}(y)$

$$\int g(x) \mathrm{d}x = \int g(\underbrace{\mathcal{T}^{-1}(y)}_{x}) \underbrace{|\det J_{\mathcal{T}^{-1}}(y)| \mathrm{d}y}_{\mathrm{d}x}$$

and similarly for a function h(y)

 $\int h(\mathbf{y}) \mathrm{d}\mathbf{y}$

We can integrate a function g(x)by substituting $x = T^{-1}(y)$

$$\int g(x) \mathrm{d}x = \int g(\underbrace{\mathcal{T}^{-1}(y)}_{x}) \underbrace{|\det J_{\mathcal{T}^{-1}}(y)| \mathrm{d}y}_{\mathrm{d}x}$$

and similarly for a function h(y)

$$\int h(y) \mathrm{d} y = \int h(\mathcal{T}(x))$$

We can integrate a function g(x)by substituting $x = T^{-1}(y)$

$$\int g(x) \mathrm{d}x = \int g(\underbrace{\mathcal{T}^{-1}(y)}_{x}) \underbrace{|\det J_{\mathcal{T}^{-1}}(y)| \mathrm{d}y}_{\mathrm{d}x}$$

and similarly for a function h(y)

$$\int h(y) \mathrm{d}y = \int h(\mathcal{T}(x)) |\det J_{\mathcal{T}}(x)| \mathrm{d}x$$

Let X take on values in \mathbb{R}^{K} with density $p_{X}(x)$

Let X take on values in \mathbb{R}^{K} with density $p_{X}(x)$ and recall that $y = \mathcal{T}(x)$ and $x = \mathcal{T}^{-1}(y)$

Let X take on values in \mathbb{R}^{K} with density $p_{X}(x)$ and recall that $y = \mathcal{T}(x)$ and $x = \mathcal{T}^{-1}(y)$

Then \mathcal{T} induces a density $p_Y(y)$ expressed as

$$p_Y(y) = p_X(\mathcal{T}^{-1}(y)) |\det J_{\mathcal{T}^{-1}}(y)|$$

Let X take on values in \mathbb{R}^{K} with density $p_{X}(x)$ and recall that $y = \mathcal{T}(x)$ and $x = \mathcal{T}^{-1}(y)$

Then \mathcal{T} induces a density $p_Y(y)$ expressed as

$$p_Y(y) = p_X(\mathcal{T}^{-1}(y)) |\det J_{\mathcal{T}^{-1}}(y)|$$

and then it follows that

$$p_X(x) = p_Y(\mathcal{T}(x)) |\det J_{\mathcal{T}}(x)|$$

2 Reparameterised gradients revisited

Let Z take on values in \mathbb{R}^{K} with pdf $q(z|\lambda)$

Let Z take on values in \mathbb{R}^{K} with pdf $q(z|\lambda)$

The idea is to count on a reparameterisation

Let Z take on values in \mathbb{R}^{K} with pdf $q(z|\lambda)$

The idea is to count on a *reparameterisation* a transformation $S_{\lambda} : \mathbb{R}^{K} \to \mathbb{R}^{K}$ such that

Let Z take on values in \mathbb{R}^{K} with pdf $q(z|\lambda)$

The idea is to count on a *reparameterisation* a transformation $S_{\lambda} : \mathbb{R}^{K} \to \mathbb{R}^{K}$ such that

 $\mathcal{S}_{\lambda}(z) \sim \pi(\epsilon)$

Let Z take on values in \mathbb{R}^{K} with pdf $q(z|\lambda)$

The idea is to count on a *reparameterisation* a transformation $S_{\lambda} : \mathbb{R}^{K} \to \mathbb{R}^{K}$ such that

 $egin{aligned} \mathcal{S}_\lambda(z) &\sim \pi(\epsilon) \ \mathcal{S}_\lambda^{-1}(\epsilon) &\sim q(z|\lambda) \end{aligned}$

Let Z take on values in \mathbb{R}^{K} with pdf $q(z|\lambda)$

The idea is to count on a *reparameterisation* a transformation $S_{\lambda} : \mathbb{R}^{K} \to \mathbb{R}^{K}$ such that

 $egin{aligned} \mathcal{S}_\lambda(z) &\sim \pi(\epsilon) \ \mathcal{S}_\lambda^{-1}(\epsilon) &\sim q(z|\lambda) \end{aligned}$

 π(ε) does not depend on parameters λ we call it a *base density*

Let Z take on values in \mathbb{R}^{K} with pdf $q(z|\lambda)$

The idea is to count on a *reparameterisation* a transformation $S_{\lambda} : \mathbb{R}^{K} \to \mathbb{R}^{K}$ such that

 $egin{aligned} \mathcal{S}_\lambda(z) &\sim \pi(\epsilon) \ \mathcal{S}_\lambda^{-1}(\epsilon) &\sim q(z|\lambda) \end{aligned}$

- π(ε) does not depend on parameters λ we call it a *base density*
- $\mathcal{S}_{\lambda}(z)$ absorbs dependency on λ

Reparameterised expectations

If we are interested in

 $\mathbb{E}_{q(z|\lambda)}[g(z)]$

$$\mathbb{E}_{q(z|\lambda)}[g(z)] = \int q(z|\lambda)g(z)dz$$

$$\mathbb{E}_{q(z|\lambda)}[g(z)] = \int q(z|\lambda)g(z)dz$$
$$= \int \underbrace{\pi(\mathcal{S}_{\lambda}(z))|\det J_{\mathcal{S}_{\lambda}}(z)|}_{\text{change of density}}g(z)dz$$

$$\mathbb{E}_{q(z|\lambda)}[g(z)] = \int q(z|\lambda)g(z)dz$$
$$= \int \underbrace{\pi(\mathcal{S}_{\lambda}(z))|\det J_{\mathcal{S}_{\lambda}}(z)|}_{\text{change of density}}g(z)dz$$
$$= \int \pi(\epsilon)$$

$$\mathbb{E}_{q(z|\lambda)}[g(z)] = \int q(z|\lambda)g(z)dz$$
$$= \int \underbrace{\pi(\mathcal{S}_{\lambda}(z))|\det J_{\mathcal{S}_{\lambda}}(z)|}_{\text{change of density}} g(z)dz$$
$$= \int \pi(\epsilon) \underbrace{\left|\det J_{\mathcal{S}_{\lambda}^{-1}}(\epsilon)\right|^{-1}}_{\text{inv func theorem}}$$

$$\mathbb{E}_{q(z|\lambda)}[g(z)] = \int q(z|\lambda)g(z)dz$$

= $\int \underbrace{\pi(S_{\lambda}(z))|\det J_{S_{\lambda}}(z)|}_{\text{change of density}} g(z)dz$
= $\int \pi(\epsilon) \underbrace{|\det J_{S_{\lambda}^{-1}}(\epsilon)|}_{\text{inv func theorem}} g(\underbrace{S_{\lambda}^{-1}(\epsilon)}_{z})$

$$\mathbb{E}_{q(z|\lambda)}[g(z)] = \int q(z|\lambda)g(z)dz$$

= $\int \underbrace{\pi(S_{\lambda}(z))|\det J_{S_{\lambda}}(z)|}_{\text{change of density}} g(z)dz$
= $\int \pi(\epsilon) \underbrace{\left|\det J_{S_{\lambda}^{-1}}(\epsilon)\right|^{-1}}_{\text{inv func theorem}} g(\underbrace{S_{\lambda}^{-1}(\epsilon)}_{z}) \underbrace{\left|\det J_{S_{\lambda}^{-1}}(\epsilon)\right|}_{\text{change of var}}$

$$\mathbb{E}_{q(z|\lambda)}[g(z)] = \int q(z|\lambda)g(z)dz$$

= $\int \underbrace{\pi(\mathcal{S}_{\lambda}(z))|\det J_{\mathcal{S}_{\lambda}}(z)|}_{\text{change of density}} g(z)dz$
= $\int \pi(\epsilon) \underbrace{\left|\det J_{\mathcal{S}_{\lambda}^{-1}}(\epsilon)\right|^{-1}}_{\text{inv func theorem}} g(\underbrace{\mathcal{S}_{\lambda}^{-1}(\epsilon)}_{z}) \underbrace{\left|\det J_{\mathcal{S}_{\lambda}^{-1}}(\epsilon)\right|}_{\text{change of var}}$
= $\int \pi(\epsilon)g(\mathcal{S}_{\lambda}^{-1}(\epsilon))d\epsilon$

$$\begin{split} \mathbb{E}_{q(z|\lambda)}\left[g(z)\right] &= \int q(z|\lambda)g(z)\mathrm{d}z\\ &= \int \underbrace{\pi(\mathcal{S}_{\lambda}(z))|\mathrm{det}\,J_{\mathcal{S}_{\lambda}}(z)|}_{\mathrm{change of density}}g(z)\mathrm{d}z\\ &= \int \pi(\epsilon) \underbrace{\left|\mathrm{det}\,J_{\mathcal{S}_{\lambda}^{-1}}(\epsilon)\right|^{-1}}_{\mathrm{inv func theorem}}g(\underbrace{\mathcal{S}_{\lambda}^{-1}(\epsilon)}_{z})\underbrace{\left|\mathrm{det}\,J_{\mathcal{S}_{\lambda}^{-1}}(\epsilon)\right|}_{\mathrm{change of var}}\\ &= \int \pi(\epsilon)g(\mathcal{S}_{\lambda}^{-1}(\epsilon))\mathrm{d}\epsilon = \mathbb{E}_{\pi(\epsilon)}\left[g(\mathcal{S}_{\lambda}^{-1}(\epsilon))\right] \end{split}$$

Reparameterised gradients

For optimisation, we need tractable gradients

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|\lambda)} \left[g(z) \right] = \frac{\partial}{\partial \lambda} \mathbb{E}_{\pi(\epsilon)} \left[g(\mathcal{S}_{\lambda}^{-1}(\epsilon)) \right]$$

Reparameterised gradients

For optimisation, we need tractable gradients

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{\boldsymbol{q}(\boldsymbol{z}|\lambda)} \left[\boldsymbol{g}(\boldsymbol{z}) \right] = \frac{\partial}{\partial \lambda} \mathbb{E}_{\pi(\epsilon)} \left[\boldsymbol{g}(\mathcal{S}_{\lambda}^{-1}(\epsilon)) \right]$$

since now the density does not depend on λ , we can obtain a gradient estimate

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|\lambda)} \left[g(z) \right] = \mathbb{E}_{\pi(\epsilon)} \left[\frac{\partial}{\partial \lambda} g(\mathcal{S}_{\lambda}^{-1}(\epsilon)) \right]$$

Reparameterised gradients

For optimisation, we need tractable gradients

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{\boldsymbol{q}(\boldsymbol{z}|\lambda)} \left[\boldsymbol{g}(\boldsymbol{z}) \right] = \frac{\partial}{\partial \lambda} \mathbb{E}_{\pi(\epsilon)} \left[\boldsymbol{g}(\mathcal{S}_{\lambda}^{-1}(\epsilon)) \right]$$

since now the density does not depend on $\lambda,$ we can obtain a gradient estimate

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|\lambda)} [g(z)] = \mathbb{E}_{\pi(\epsilon)} \left[\frac{\partial}{\partial \lambda} g(\mathcal{S}_{\lambda}^{-1}(\epsilon)) \right]$$
$$\stackrel{\mathsf{MC}}{\approx} \frac{1}{M} \sum_{\substack{i=1\\\epsilon_i \sim \pi(\epsilon)}}^{M} \frac{\partial}{\partial \lambda} g(\mathcal{S}_{\lambda}^{-1}(\epsilon_i))$$

We have seen one case, namely, if $\epsilon \sim \mathcal{N}(0, I)$ and $Z \sim \mathcal{N}(\mu, \sigma^2)$

We have seen one case, namely, if $\epsilon \sim \mathcal{N}(0, I)$ and $Z \sim \mathcal{N}(\mu, \sigma^2)$ Then

$$Z \sim \mu + \sigma \epsilon$$

and

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{\mathcal{N}(z|\mu,\sigma^2)} \left[g(z) \right]$$

We have seen one case, namely, if $\epsilon \sim \mathcal{N}(0, I)$ and $Z \sim \mathcal{N}(\mu, \sigma^2)$ Then

$$Z \sim \mu + \sigma \epsilon$$

and

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{\mathcal{N}(z|\mu,\sigma^2)} \left[g(z) \right] \\ &= \mathbb{E}_{\mathcal{N}(0,I)} \left[\frac{\partial}{\partial \lambda} g(z=\mu+\sigma\epsilon) \right] \end{split}$$

We have seen one case, namely, if $\epsilon \sim \mathcal{N}(0, I)$ and $Z \sim \mathcal{N}(\mu, \sigma^2)$ Then

$$Z \sim \mu + \sigma \epsilon$$

and

$$\begin{split} &\frac{\partial}{\partial\lambda} \mathbb{E}_{\mathcal{N}(z|\mu,\sigma^{2})} \left[g(z) \right] \\ &= \mathbb{E}_{\mathcal{N}(0,I)} \left[\frac{\partial}{\partial\lambda} g(z=\mu+\sigma\epsilon) \right] \\ &= \mathbb{E}_{\mathcal{N}(0,I)} \left[\frac{\partial}{\partial z} g(z=\mu+\sigma\epsilon) \frac{\partial z}{\partial\lambda} \right] \end{split}$$

Reparameterised gradients: Inverse cdf

Inverse cdf

• for univariate Z with pdf $f_Z(z)$ and cdf $F_Z(z)$

$$P \sim \mathcal{U}(0,1) \qquad Z \sim F_Z^{-1}(P)$$

where $F_Z^{-1}(p)$ is the quantile function

Reparameterised gradients: Inverse cdf

Inverse cdf

• for univariate Z with pdf $f_Z(z)$ and cdf $F_Z(z)$

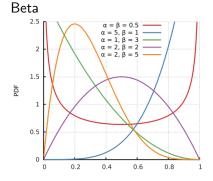
$$P \sim \mathcal{U}(0,1) \qquad Z \sim F_Z^{-1}(P)$$

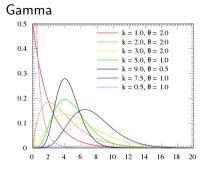
where $F_Z^{-1}(p)$ is the quantile function

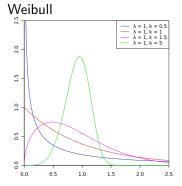
Example: Kumaraswamy distribution

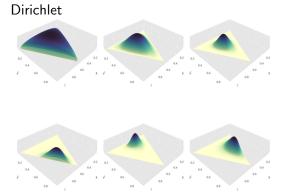
•
$$f_Z(z; a, b) = abz^{a-1}(1-z^a)^{b-1}$$

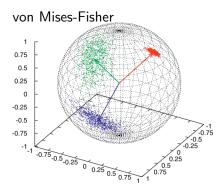
• $F_Z(z; a, b) = 1 - (1-z^a)^b$
• $F_Z^{-1}(p; a, b) = (1 - (1-p)^{1/b})^{1/a}$











Outline

Multivariate calculus recap

Reparameterised gradients revisited

Motivation

 many models have intractable posteriors their normalising constants (evidence) lack analytic solutions

Motivation

- many models have intractable posteriors their normalising constants (evidence) lack analytic solutions
- but many models are differentiable that's the main constraint for using NNs

Motivation

- many models have intractable posteriors their normalising constants (evidence) lack analytic solutions
- but many models are differentiable that's the main constraint for using NNs

Reparameterised gradients are a step towards automating VI for differentiable models

Motivation

- many models have intractable posteriors their normalising constants (evidence) lack analytic solutions
- but many models are differentiable that's the main constraint for using NNs

Reparameterised gradients are a step towards automating VI for differentiable models

• but not every model of interest employs rvs for which a reparameterisation is known

Example: Weibull-Poisson model

Suppose we have some ordinal data which we assume to be Poisson-distributed

$$X|z \sim \text{Poisson}(z)$$
 $z \in \mathbb{R}_{>0}$

Example: Weibull-Poisson model

Suppose we have some ordinal data which we assume to be Poisson-distributed

$$X|z \sim \text{Poisson}(z)$$
 $z \in \mathbb{R}_{>0}$

and suppose we want to impose a Weibull prior on the Poisson rate

Example: Weibull-Poisson model

Suppose we have some ordinal data which we assume to be Poisson-distributed

$$egin{aligned} & z|r,k \sim \mathsf{Weibull}(r,k) & r \in \mathbb{R}_{>0}, k \in \mathbb{R}_{>0} \ & X|z \sim \mathsf{Poisson}(z) & z \in \mathbb{R}_{>0} \end{aligned}$$

and suppose we want to impose a Weibull prior on the Poisson rate

Generative model

$$p(x,z|r,k) = p(z|r,k)p(x|z)$$

Generative model

$$p(x,z|r,k) = p(z|r,k)p(x|z)$$

Marginal

$$p(x|r,k) = \int_{\mathbb{R}_{>0}} p(z|r,k)p(x|z) dz$$

Generative model

$$p(x,z|r,k) = p(z|r,k)p(x|z)$$

Marginal

$$p(x|r,k) = \int_{\mathbb{R}_{>0}} p(z|r,k) p(x|z) dz$$

ELBO

$$\mathbb{E}_{q(z|\lambda)}\left[\log p(x,z|r,k)\right] + \mathbb{H}\left(q(z)\right)$$

Generative model

$$p(x,z|r,k) = p(z|r,k)p(x|z)$$

Marginal

$$p(x|r,k) = \int_{\mathbb{R}_{>0}} p(z|r,k) p(x|z) dz$$

ELBO

$$\mathbb{E}_{q(z|\lambda)}\left[\log p(x,z|r,k)\right] + \mathbb{H}\left(q(z)\right)$$

Can we make $q(z|\lambda)$ Gaussian?

Generative model

$$p(x,z|r,k) = p(z|r,k)p(x|z)$$

Marginal

$$p(x|r,k) = \int_{\mathbb{R}_{>0}} p(z|r,k) p(x|z) dz$$

ELBO

$$\mathbb{E}_{q(z|\lambda)}\left[\log p(x,z|r,k)\right] + \mathbb{H}\left(q(z)\right)$$

Can we make $q(z|\lambda)$ Gaussian? No! supp $(\mathcal{N}(z|\mu, \sigma^2)) = \mathbb{R}$

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|z)$$

= Weibull(z|r, k) Poisson(x|z)

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|z)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(\underbrace{r, k}_{z}) Poisson(x|\underbrace{r, k}_{z})

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|z)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(\underbrace{exp(\zeta)}_{z}|r, k) Poisson(x|\underbrace{exp(\zeta)}_{z})

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|z)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(\underbrace{\exp(\zeta)}_{z}|r, k) Poisson(x|\underbrace{\exp(\zeta)}_{z})|det J_{exp}(\zeta)|

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|z)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(exp(\zeta) | r, k) Poisson(x| exp(\zeta))|det J_{exp}(\zeta)|
= f(x, \zeta)

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|z)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(exp(\zeta) | r, k) Poisson(x| exp(\zeta))|det J_{exp}(\zeta)|
= f(x, \zeta)

ADVI

ELBO

$\mathbb{E}_{q(\zeta|\lambda)}\left[f(x,\zeta)\right] + \mathbb{H}\left(q(\zeta)\right)$

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|z)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(exp(\zeta) | r, k) Poisson(x| exp(\zeta)) | det J_{exp}(\zeta) |
= f(x, \zeta)

ADVI

ELBO

$$\mathbb{E}_{q(\zeta|\lambda)}\left[f(x,\zeta)\right] + \mathbb{H}\left(q(\zeta)\right)$$

Can we use a Gaussian approximate posterior?

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|z)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(exp(\zeta) | r, k) Poisson(x| exp(\zeta)) | det J_{exp}(\zeta) |
= f(x, \zeta)

ADVI

ELBO

$$\mathbb{E}_{q(\zeta|\lambda)}\left[f(x,\zeta)\right] + \mathbb{H}\left(q(\zeta)\right)$$

Can we use a Gaussian approximate posterior? Yes!

Differentiable models

We focus on differentiable probability models

$$p(x,z) = p(x|z)p(z)$$

Differentiable models

We focus on differentiable probability models

p(x,z) = p(x|z)p(z)

• members of this class have continuous latent variables z

Differentiable models

We focus on differentiable probability models

p(x,z) = p(x|z)p(z)

- members of this class have continuous latent variables z
- and the gradient $\nabla_z \log p(x, z)$ is valid within the *support* of the prior $supp(p(z)) = \{z \in \mathbb{R}^K : p(z) > 0\} \subseteq \mathbb{R}^K$

Recall the gradient of the ELBO

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \frac{\partial}{\partial \lambda} \mathbb{H} \left(q(z;\lambda) \right)$$

Recall the gradient of the ELBO

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \frac{\partial}{\partial \lambda} \mathbb{H} \left(q(z;\lambda) \right)$$

Recall the gradient of the ELBO

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \frac{\partial}{\partial \lambda} \mathbb{H} \left(q(z;\lambda) \right)$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right]$$

Recall the gradient of the ELBO

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \frac{\partial}{\partial \lambda} \mathbb{H} \left(q(z;\lambda) \right)$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] = \mathbb{E}_{\pi(\epsilon)} \left[\frac{\partial}{\partial \lambda} \log p(x,z = \mathcal{S}_{\lambda}^{-1}(\epsilon)) \right]$$

Recall the gradient of the ELBO

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \frac{\partial}{\partial \lambda} \mathbb{H} \left(q(z;\lambda) \right)$$

$$\begin{split} \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] &= \mathbb{E}_{\pi(\epsilon)} \left[\frac{\partial}{\partial \lambda} \log p(x,z = \mathcal{S}_{\lambda}^{-1}(\epsilon)) \right] \\ &= \mathbb{E}_{\pi(\epsilon)} \left[\frac{\partial}{\partial z} \log p(x,z) \frac{\partial}{\partial \lambda} \mathcal{S}_{\lambda}^{-1}(\epsilon) \right] \end{split}$$

VI optimisation problem

Let's focus on the design and optimisation of the variational approximation

 $\underset{q(z)}{\operatorname{arg\,min\,KL}} \left(q(z) \mid \mid p(z|x) \right)$

VI optimisation problem

Let's focus on the design and optimisation of the variational approximation

 $\arg\min_{q(z)} \mathsf{KL}\left(q(z) \mid \mid p(z|x)\right)$

To automate the search for a variational approximation q(z) we must ensure that

 $\operatorname{supp}(q(z)) \subseteq \operatorname{supp}(p(z|x))$

VI optimisation problem

Let's focus on the design and optimisation of the variational approximation

 $\arg\min_{q(z)} \mathsf{KL}\left(q(z) \mid \mid p(z|x)\right)$

To automate the search for a variational approximation q(z) we must ensure that

 $\operatorname{supp}(q(z)) \subseteq \operatorname{supp}(p(z|x))$

• otherwise KL is not a real number KL $(q \mid\mid p) = \mathbb{E}_q [\log q] - \mathbb{E}_q [\log p] \stackrel{\text{def}}{=} \infty$

So let's constrain q(z) to a family Q whose support is included in the support of the posterior

 $\underset{q(z)\in\mathcal{Q}}{\arg\min}\operatorname{KL}\left(q(z)\mid\mid p(z|x)\right)$

where

$$Q = \{q(z) : \operatorname{supp}(q(z)) \subseteq \operatorname{supp}(p(z|x))\}$$

So let's constrain q(z) to a family Q whose support is included in the support of the posterior

 $\underset{q(z)\in\mathcal{Q}}{\arg\min}\operatorname{KL}\left(q(z)\mid\mid p(z|x)\right)$

where

$$Q = \{q(z) : \operatorname{supp}(q(z)) \subseteq \operatorname{supp}(p(z|x))\}$$

But what is the support of p(z|x)?

So let's constrain q(z) to a family Q whose support is included in the support of the posterior

 $\underset{q(z)\in\mathcal{Q}}{\arg\min}\operatorname{KL}\left(q(z)\mid\mid p(z|x)\right)$

where

$$Q = \{q(z) : \operatorname{supp}(q(z)) \subseteq \operatorname{supp}(p(z|x))\}$$

But what is the support of p(z|x)?

• typically the same as the support of p(z)

So let's constrain q(z) to a family Q whose support is included in the support of the posterior

 $\arg\min_{q(z)\in\mathcal{Q}}\mathsf{KL}\left(q(z)\mid\mid p(z|x)\right)$

where

$$Q = \{q(z) : \operatorname{supp}(q(z)) \subseteq \operatorname{supp}(p(z|x))\}$$

But what is the support of p(z|x)?

typically the same as the support of p(z) as long as p(x, z) > 0 if p(z) > 0

Parametric family

So let's constrain q(z) to a family Q whose support is included in the support of the prior

 $\underset{q(z)\in\mathcal{Q}}{\arg\min} \operatorname{KL}\left(q(z) \mid\mid p(z|x)\right)$

where

 $\mathcal{Q} = \{q(z; \lambda) : \lambda \in \Lambda, \operatorname{supp}(q(z; \lambda)) \subseteq \operatorname{supp}(p(z))\}$

Parametric family

So let's constrain q(z) to a family Q whose support is included in the support of the prior

 $\underset{q(z)\in\mathcal{Q}}{\operatorname{arg\,min\,KL}}\left(q(z)\mid\mid p(z|x)\right)$

where

 $\mathcal{Q} = \{q(z; \lambda) : \lambda \in \Lambda, \operatorname{supp}(q(z; \lambda)) \subseteq \operatorname{supp}(p(z))\}$

• a parameter vector λ picks out a member of the family

We maximise the ELBO

$$\operatorname*{arg\,max}_{\lambda \in \Lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z;\lambda) \right)$$

We maximise the ELBO

 $\operatorname*{arg\,max}_{\lambda \in \Lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z;\lambda) \right)$

subject to

$$\mathcal{Q} = \{q(z; \lambda) : \lambda \in \Lambda, \operatorname{supp}(q(z; \lambda)) \subseteq \operatorname{supp}(p(z))\}$$

We maximise the ELBO

 $\operatorname*{arg\,max}_{\lambda \in \Lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z;\lambda) \right)$

subject to

$$\mathcal{Q} = \{q(z; \lambda) : \lambda \in \Lambda, \operatorname{supp}(q(z; \lambda)) \subseteq \operatorname{supp}(p(z))\}$$

Often there can be two constraints here

We maximise the ELBO

 $\operatorname*{arg\,max}_{\lambda \in \Lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z;\lambda) \right)$

subject to

$$\mathcal{Q} = \{q(z; \lambda) : \lambda \in \Lambda, \operatorname{supp}(q(z; \lambda)) \subseteq \operatorname{supp}(p(z))\}$$

Often there can be two constraints here

support matching constraint

We maximise the ELBO

 $\operatorname*{arg\,max}_{\lambda \in \Lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z;\lambda) \right)$

subject to

$$\mathcal{Q} = \{q(z; \lambda) : \lambda \in \Lambda, \operatorname{supp}(q(z; \lambda)) \subseteq \operatorname{supp}(p(z))\}$$

Often there can be two constraints here

- support matching constraint
- Λ may be constrained to a subset of \mathbb{R}^D

We maximise the ELBO

 $\operatorname*{arg\,max}_{\lambda \in \Lambda} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z;\lambda) \right)$

subject to

$$\mathcal{Q} = \{q(z; \lambda) : \lambda \in \Lambda, \operatorname{supp}(q(z; \lambda)) \subseteq \operatorname{supp}(p(z))\}$$

Often there can be two constraints here

- support matching constraint
- Λ may be constrained to a subset of \mathbb{R}^D
 - e.g. univariate Gaussian location lives in ${\mathbb R}$ but scale lives in ${\mathbb R}_{>0}$

Consider the Gaussian case: $Z \sim \mathcal{N}(\mu, \sigma)$

Consider the Gaussian case: $Z \sim \mathcal{N}(\mu, \sigma)$ how can we obtain $\mu \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^{d}_{>0}$ from $\lambda_{\mu} \in \mathbb{R}^d$ and $\lambda_{\sigma} \in \mathbb{R}^d$?

Consider the Gaussian case: $Z \sim \mathcal{N}(\mu, \sigma)$ how can we obtain $\mu \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^d_{>0}$ from $\lambda_{\mu} \in \mathbb{R}^d$ and $\lambda_{\sigma} \in \mathbb{R}^d$? • $\mu = \lambda_{\mu}$

Consider the Gaussian case: $Z \sim \mathcal{N}(\mu, \sigma)$ how can we obtain $\mu \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^{d}_{>0}$ from $\lambda_{\mu} \in \mathbb{R}^d$ and $\lambda_{\sigma} \in \mathbb{R}^d$? • $\mu = \lambda_{\mu}$

• $\sigma = \exp(\lambda_{\sigma})$

Consider the Gaussian case: $Z \sim \mathcal{N}(\mu, \sigma)$ how can we obtain $\mu \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^d_{>0}$ from $\lambda_{\mu} \in \mathbb{R}^d$ and $\lambda_{\sigma} \in \mathbb{R}^d$?

•
$$\mu = \lambda_{\mu}$$

•
$$\sigma = \exp(\lambda_{\sigma})$$
 or $\sigma = \operatorname{softplus}(\lambda_{\sigma})$

Parameters in real coordinate space

Consider the Gaussian case: $Z \sim \mathcal{N}(\mu, \sigma)$ how can we obtain $\mu \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^{d}_{>0}$ from $\lambda_{\mu} \in \mathbb{R}^d$ and $\lambda_{\sigma} \in \mathbb{R}^d$? • $\mu = \lambda_{\mu}$ • $\sigma = \exp(\lambda_{\sigma})$ or $\sigma = \text{softplus}(\lambda_{\sigma})$

The vMF distribution is parameterised by a unit-norm vector v how can we get v from $\lambda_v \in \mathbb{R}^d$?

Parameters in real coordinate space

Consider the Gaussian case: $Z \sim \mathcal{N}(\mu, \sigma)$ how can we obtain $\mu \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^{d}_{>0}$ from $\lambda_{\mu} \in \mathbb{R}^d$ and $\lambda_{\sigma} \in \mathbb{R}^d$? • $\mu = \lambda_{\mu}$ • $\sigma = \exp(\lambda_{\sigma})$ or $\sigma = \text{softplus}(\lambda_{\sigma})$

The vMF distribution is parameterised by a unit-norm vector v how can we get v from $\lambda_v \in \mathbb{R}^d$?

•
$$v = \frac{\lambda_v}{\|\lambda_v\|_2}$$

Parameters in real coordinate space

Consider the Gaussian case: $Z \sim \mathcal{N}(\mu, \sigma)$ how can we obtain $\mu \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^{d}_{>0}$ from $\lambda_{\mu} \in \mathbb{R}^d$ and $\lambda_{\sigma} \in \mathbb{R}^d$? • $\mu = \lambda_{\mu}$ • $\sigma = \exp(\lambda_{\sigma})$ or $\sigma = \text{softplus}(\lambda_{\sigma})$

The vMF distribution is parameterised by a unit-norm vector v how can we get v from $\lambda_v \in \mathbb{R}^d$?

•
$$v = \frac{\lambda_v}{\|\lambda_v\|_2}$$

It is typically possible to work with unconstrained parameters, it only takes an appropriate activation

Constrained optimisation for the ELBO

We maximise the ELBO

$$\underset{\lambda \in \mathbb{R}^{D}}{\arg \max} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z;\lambda) \right)$$

Constrained optimisation for the ELBO

We maximise the ELBO

$$\underset{\lambda \in \mathbb{R}^{D}}{\arg \max} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z;\lambda) \right)$$

subject to

$$\mathcal{Q} = \{q(z; \lambda) : \lambda \in \mathbb{R}^{D}, \operatorname{supp}(q(z; \lambda)) \subseteq \operatorname{supp}(p(z))\}$$

There is one constraint left

Constrained optimisation for the ELBO

We maximise the ELBO

$$\operatorname*{arg\,max}_{\lambda \in \mathbb{R}^{D}} \mathbb{E}_{q(z;\lambda)} \left[\log p(x,z) \right] + \mathbb{H} \left(q(z;\lambda) \right)$$

subject to

 $Q = \{q(z; \lambda) : \lambda \in \mathbb{R}^{D}, \operatorname{supp}(q(z; \lambda)) \subseteq \operatorname{supp}(p(z))\}$

There is one constraint left

 support of q(z; λ) depends on the choice of prior and thus may be a subset of ℝ^K

A gradient-based black-box VI procedure

Oustom parameter space

- Oustom parameter space
 - Appropriate transformations of unconstrained parameters!

- Oustom parameter space
 - Appropriate transformations of unconstrained parameters!
- 2 Custom supp(p(z))

ADVI

- Oustom parameter space
 - Appropriate transformations of unconstrained parameters!
- 2 Custom supp(p(z))
 - Express z ∈ supp(p(z)) ⊆ ℝ^K as a transformation of some unconstrained ζ ∈ ℝ^K

ADVI

- Oustom parameter space
 - Appropriate transformations of unconstrained parameters!
- 2 Custom supp(p(z))
 - Express z ∈ supp(p(z)) ⊆ ℝ^K as a transformation of some unconstrained ζ ∈ ℝ^K
 - Pick a variational family over the entire real coordinate space

ADVI

- Oustom parameter space
 - Appropriate transformations of unconstrained parameters!
- 2 Custom supp(p(z))
 - Express z ∈ supp(p(z)) ⊆ ℝ^K as a transformation of some unconstrained ζ ∈ ℝ^K
 - Pick a variational family over the entire real coordinate space
 - basically, pick a Gaussian!

ADVI

- Oustom parameter space
 - Appropriate transformations of unconstrained parameters!
- 2 Custom supp(p(z))
 - Express z ∈ supp(p(z)) ⊆ ℝ^K as a transformation of some unconstrained ζ ∈ ℝ^K
 - Pick a variational family over the entire real coordinate space
 - basically, pick a Gaussian!
- Intractable expectations

ADVI

- Oustom parameter space
 - Appropriate transformations of unconstrained parameters!
- 2 Custom supp(p(z))
 - Express z ∈ supp(p(z)) ⊆ ℝ^K as a transformation of some unconstrained ζ ∈ ℝ^K
 - Pick a variational family over the entire real coordinate space
 - basically, pick a Gaussian!
- Intractable expectations
 - Reparameterised Gradients!

Let's introduce an invertible and differentiable transformation

 $\mathcal{T}: \operatorname{supp}(p(z)) \to \mathbb{R}^K$

Let's introduce an invertible and differentiable transformation

$$\mathcal{T}: \operatorname{supp}(p(z)) \to \mathbb{R}^K$$

and define a transformed variable $\zeta \in \mathbb{R}^{K}$

 $\zeta = \mathcal{T}(z)$

Let's introduce an invertible and differentiable transformation

$$\mathcal{T}: \operatorname{supp}(p(z)) \to \mathbb{R}^K$$

and define a transformed variable $\boldsymbol{\zeta} \in \mathbb{R}^{K}$

$$\zeta = \mathcal{T}(z)$$

Recall that we have a joint density p(x, z)

Let's introduce an invertible and differentiable transformation

 $\mathcal{T}: \operatorname{supp}(p(z)) \to \mathbb{R}^K$

and define a transformed variable $\zeta \in \mathbb{R}^{K}$

 $\zeta = \mathcal{T}(z)$

Let's introduce an invertible and differentiable transformation

$$\mathcal{T}: \operatorname{supp}(p(z)) \to \mathbb{R}^K$$

and define a transformed variable $\zeta \in \mathbb{R}^{K}$

$$\zeta = \mathcal{T}(z)$$

$$p(x,\zeta) = p(x, \underbrace{}_{z}) |\det J ()|$$

Let's introduce an invertible and differentiable transformation

$$\mathcal{T}: \operatorname{supp}(p(z)) \to \mathbb{R}^K$$

and define a transformed variable $\zeta \in \mathbb{R}^{K}$

$$\zeta = \mathcal{T}(z)$$

$$p(x,\zeta) = p(x, \underbrace{\mathcal{T}^{-1}(\zeta)}_{z}) |\det J \quad ()|$$

Let's introduce an invertible and differentiable transformation

$$\mathcal{T}: \operatorname{supp}(p(z)) \to \mathbb{R}^K$$

and define a transformed variable $\zeta \in \mathbb{R}^{K}$

$$\zeta = \mathcal{T}(z)$$

$$p(x,\zeta) = p(x, \underbrace{\mathcal{T}^{-1}(\zeta)}_{z}) |\det J_{\mathcal{T}^{-1}}(\zeta)|$$

We can design a posterior approximation whose support is $\mathbb{R}^{\mathcal{K}}$

We can design a posterior approximation whose support is $\mathbb{R}^{\mathcal{K}}$

 $q(\zeta|\lambda)$

We can design a posterior approximation whose support is $\mathbb{R}^{\mathcal{K}}$

$$q(\zeta|\lambda) = \prod_{\substack{k=1 \ \text{mean field}}}^{K} q(\zeta_k|\lambda)$$

We can design a posterior approximation whose support is \mathbb{R}^{K}

$$q(\zeta|\lambda) = \prod_{\substack{k=1\\ \text{mean field}}}^{K} q(\zeta_k|\lambda) = \prod_{k=1}^{K} \mathcal{N}(\zeta_k|\mu_k, \sigma_k^2)$$

where

•
$$\mu_k = \lambda_{\mu_k}$$
 for $\lambda_{\mu_k} \in \mathbb{R}^K$
• $\sigma_k = \text{softplus}(\lambda_{\sigma_k})$ for $\lambda_{\sigma_k} \in \mathbb{R}^K$

$\log p(x)$

$$\log p(x) = \log \int p(x, z) \mathrm{d}z$$

$$\log p(x) = \log \int p(x, z) dz$$
$$= \log \int p(x, \mathcal{T}^{-1}(\zeta)) |\det J_{\mathcal{T}^{-1}}(\zeta)| d\zeta$$

$$\log p(x) = \log \int p(x, z) dz$$
$$= \log \int p(x, \mathcal{T}^{-1}(\zeta)) |\det J_{\mathcal{T}^{-1}}(\zeta)| d\zeta$$
$$= \log \int q(\zeta) \frac{p(x, \mathcal{T}^{-1}(\zeta)) |\det J_{\mathcal{T}^{-1}}(\zeta)|}{q(\zeta)} d\zeta$$

$$\log p(x) = \log \int p(x, z) dz$$

= $\log \int p(x, \mathcal{T}^{-1}(\zeta)) |\det J_{\mathcal{T}^{-1}}(\zeta)| d\zeta$
= $\log \int q(\zeta) \frac{p(x, \mathcal{T}^{-1}(\zeta)) |\det J_{\mathcal{T}^{-1}}(\zeta)|}{q(\zeta)} d\zeta$
 $\stackrel{JI}{\geq} \int q(\zeta) \log \frac{p(x, \mathcal{T}^{-1}(\zeta)) |\det J_{\mathcal{T}^{-1}}(\zeta)|}{q(\zeta)} d\zeta$

$$\log p(x) = \log \int p(x, z) dz$$

= $\log \int p(x, \mathcal{T}^{-1}(\zeta)) |\det J_{\mathcal{T}^{-1}}(\zeta)| d\zeta$
= $\log \int q(\zeta) \frac{p(x, \mathcal{T}^{-1}(\zeta)) |\det J_{\mathcal{T}^{-1}}(\zeta)|}{q(\zeta)} d\zeta$
 $\stackrel{J!}{\geq} \int q(\zeta) \log \frac{p(x, \mathcal{T}^{-1}(\zeta)) |\det J_{\mathcal{T}^{-1}}(\zeta)|}{q(\zeta)} d\zeta$
= $\mathbb{E}_{q(\zeta)} \left[\log p(x, \mathcal{T}^{-1}(\zeta)) + \log |\det J_{\mathcal{T}^{-1}}(\zeta)|\right] + \mathbb{H}(q(\zeta))$

Reparameterised ELBO

Recall that for Gaussians we have a standardisation procedure $\mathcal{S}_\lambda(\zeta)\sim \mathcal{N}(\epsilon|0,I)$

 $\mathbb{E}_{q(\zeta|\lambda)}\left[\log p(x, \mathcal{T}^{-1}(\zeta)) + \log |\det J_{\mathcal{T}^{-1}}(\zeta)|\right] + \mathbb{H}\left(q(\zeta|\lambda)\right)$

Reparameterised ELBO

Recall that for Gaussians we have a standardisation procedure $\mathcal{S}_{\lambda}(\zeta) \sim \mathcal{N}(\epsilon|0, I)$

 $\mathbb{E}_{q(\zeta|\lambda)} \left[\log p(x, \mathcal{T}^{-1}(\zeta)) + \log |\det J_{\mathcal{T}^{-1}}(\zeta)| \right] + \mathbb{H} \left(q(\zeta|\lambda) \right)$ $= \mathbb{E}_{\mathcal{N}(\epsilon|0,l)} \left[\log p(x, \underbrace{\mathcal{T}^{-1}(\mathcal{S}_{\lambda}^{-1}(\epsilon))}_{z}) + \log |\det J_{\mathcal{T}^{-1}}(\mathcal{S}_{\lambda}^{-1}(\epsilon))| \right]$ $+ \mathbb{H} \left(q(\zeta|\lambda) \right)$

Gradient estimate

For $\epsilon_i \sim \mathcal{N}(0, I)$

$$\frac{\partial}{\partial \lambda}$$
 ELBO(λ)

Gradient estimate

For $\epsilon_i \sim \mathcal{N}(0, I)$

$$\frac{\partial}{\partial \lambda} \operatorname{ELBO}(\lambda) \stackrel{\mathsf{MC}}{\approx} \frac{1}{M} \sum_{i=1}^{M} \frac{\partial}{\partial \lambda} \log \underbrace{p(x | \mathcal{T}^{-1}(\mathcal{S}_{\lambda}^{-1}(\epsilon_i)))}_{\text{likelihood of } z}$$

ADVI

Gradient estimate

For $\epsilon_i \sim \mathcal{N}(0, I)$

$$\frac{\partial}{\partial \lambda} \operatorname{ELBO}(\lambda) \stackrel{\mathsf{MC}}{\approx} \frac{1}{M} \sum_{i=1}^{M} \frac{\partial}{\partial \lambda} \log \underbrace{p(x | \mathcal{T}^{-1}(\mathcal{S}_{\lambda}^{-1}(\epsilon_{i})))}_{\text{likelihood of } z} + \frac{\partial}{\partial \lambda} \log \underbrace{p(\mathcal{T}^{-1}(\mathcal{S}_{\lambda}^{-1}(\epsilon_{i})))}_{\text{prior density of } z}$$

ADVI

Gradient estimate

For $\epsilon_i \sim \mathcal{N}(0, I)$

$$\frac{\partial}{\partial \lambda} \operatorname{ELBO}(\lambda) \stackrel{\mathsf{MC}}{\approx} \frac{1}{M} \sum_{i=1}^{M} \frac{\partial}{\partial \lambda} \log \underbrace{p(x | \mathcal{T}^{-1}(\mathcal{S}_{\lambda}^{-1}(\epsilon_{i})))}_{\text{likelihood of } z} + \frac{\partial}{\partial \lambda} \log \underbrace{p(\mathcal{T}^{-1}(\mathcal{S}_{\lambda}^{-1}(\epsilon_{i})))}_{\text{prior density of } z} + \frac{\partial}{\partial \lambda} \log \underbrace{|\det J_{\mathcal{T}^{-1}}(\mathcal{S}_{\lambda}^{-1}(\epsilon_{i}))|}_{\text{change of volume}}$$

ADVI

Gradient estimate

For $\epsilon_i \sim \mathcal{N}(0, I)$ $\frac{\partial}{\partial \lambda} \operatorname{ELBO}(\lambda) \stackrel{\mathrm{MC}}{\approx} \frac{1}{M} \sum_{i=1}^{M} \frac{\partial}{\partial \lambda} \log \underbrace{p(x | \mathcal{T}^{-1}(\mathcal{S}_{\lambda}^{-1}(\epsilon_i)))}_{\text{likelihood of } z}$ $+ rac{\partial}{\partial\lambda} \log \underbrace{p(\mathcal{T}^{-1}(\mathcal{S}_{\lambda}^{-1}(\epsilon_i)))}$ prior density of z $+ rac{\partial}{\partial\lambda} \log \left[\underbrace{\det J_{\mathcal{T}^{-1}}(\mathcal{S}_{\lambda}^{-1}(\epsilon_i))}
ight]$ change of volume $+ \frac{\partial}{\partial \lambda} \underbrace{\mathbb{H}(q(\zeta; \lambda))}$ analaytic

Practical tips

Many software packages know how to transform the support of various distributions

- Stan
- Tensorflow tf.probability
- Pytorch torch.distributions

Outline

Multivariate calculus recap

Reparameterised gradients revisited

$$p(x, z|r, k) = p(z|r, k)p(x|\rho)$$

= Weibull(z|r, k) Poisson(x|z)

$$p(x, z|r, k) = p(z|r, k)p(x|\rho)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(\underbrace{z|r, k}_{z} |r, k) Poisson(x|\underbrace{z}_{z})

$$p(x, z|r, k) = p(z|r, k)p(x|\rho)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(log⁻¹(\zeta)|r, k) Poisson(x|log⁻¹(\zeta))

$$p(x, z|r, k) = p(z|r, k)p(x|\rho)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(log⁻¹(\zeta))/z |r, k) Poisson(x|log⁻¹(\zeta))/det J_{log⁻¹}(\zeta)|

$$p(x, z|r, k) = p(z|r, k)p(x|\rho)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull(log⁻¹(\zeta))|r, k) Poisson(x|log⁻¹(\zeta))|det J_{log⁻¹}(\zeta)|
= p(x, z = log⁻¹(\zeta))|det J_{log⁻¹}(\zeta)|

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|\rho)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull($\underbrace{\log^{-1}(\zeta)}_{z}|r, k$) Poisson(x| $\underbrace{\log^{-1}(\zeta)}_{z}$)|det $J_{\log^{-1}}(\zeta)$ |
= $p(x, z = \log^{-1}(\zeta))$ |det $J_{\log^{-1}}(\zeta)$ |

ELBO

 $\mathbb{E}_{q(\zeta|\lambda)}\left[\ldots\right] + \mathbb{H}\left(q(\zeta)\right)$

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|\rho)$$

= Weibull(z|r, k) Poisson(x|z)
= Weibull($\underbrace{\log^{-1}(\zeta)}_{z}|r, k$) Poisson(x| $\underbrace{\log^{-1}(\zeta)}_{z}$)|det $J_{\log^{-1}}(\zeta)$ |
= $p(x, z = \log^{-1}(\zeta))$ |det $J_{\log^{-1}}(\zeta)$ |

ELBO

$$\mathbb{E}_{q(\zeta|\lambda)}\left[\log p(x,z=\log^{-1}(\zeta)) \middle| \det J_{\log^{-1}}(\zeta) \middle|\right] + \mathbb{H}\left(q(\zeta)\right)$$

Build a change of variable into the model

$$p(x, z|r, k) = p(z|r, k)p(x|\rho)$$

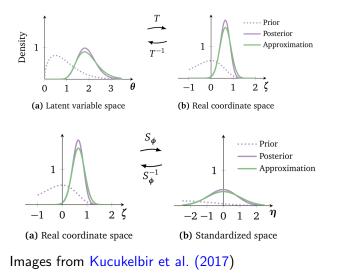
= Weibull(z|r, k) Poisson(x|z)
= Weibull($\underbrace{\log^{-1}(\zeta)}_{z}|r, k$) Poisson(x| $\underbrace{\log^{-1}(\zeta)}_{z}$)|det $J_{\log^{-1}}(\zeta)$ |
= $p(x, z = \log^{-1}(\zeta))$ |det $J_{\log^{-1}}(\zeta)$ |

ELBO

$$\begin{split} & \mathbb{E}_{q(\zeta|\lambda)}\left[\log p(x,z=\log^{-1}(\zeta)) \middle| \det J_{\log^{-1}}(\zeta) \middle|\right] + \mathbb{H}\left(q(\zeta)\right) \\ & \mathbb{E}_{\phi(\epsilon)}\left[\log p(x,z=\log^{-1}(\mathcal{S}^{-1}(\epsilon))) \middle| \det J_{\log^{-1}}(\mathcal{S}^{-1}(\epsilon)) \middle|\right] + \mathbb{H}\left(q(\zeta)\right) \end{split}$$

Example

Visualisation



Wait... no deep learning?

Sure! Parameters may well be predicted by NNs

- approximate posterior location and scale
- Weibull rate and shape

Everything is now differentiable, reparameterisable, and the optimisation is unconstrained!

ADVI is a big step towards blackbox VI

ADVI is a big step towards blackbox VI

• we knew how to map parameters to the unconstrained real coordinate space

ADVI is a big step towards blackbox VI

- we knew how to map parameters to the unconstrained real coordinate space
- now we also know how to map latent variables to unconstrained real coordinate space

ADVI is a big step towards blackbox VI

- we knew how to map parameters to the unconstrained real coordinate space
- now we also know how to map latent variables to unconstrained real coordinate space
- it takes a change of variable built into the model

ADVI is a big step towards blackbox VI

- we knew how to map parameters to the unconstrained real coordinate space
- now we also know how to map latent variables to unconstrained real coordinate space
- it takes a change of variable built into the model

Think of ADVI as reparameterised gradients and autodiff expanded to many more models!

ADVI is a big step towards blackbox VI

- we knew how to map parameters to the unconstrained real coordinate space
- now we also know how to map latent variables to unconstrained real coordinate space
- it takes a change of variable built into the model

Think of ADVI as reparameterised gradients and autodiff expanded to many more models!

What's left?

ADVI is a big step towards blackbox VI

- we knew how to map parameters to the unconstrained real coordinate space
- now we also know how to map latent variables to unconstrained real coordinate space
- it takes a change of variable built into the model

Think of ADVI as reparameterised gradients and autodiff expanded to many more models!

What's left? Our posteriors are still rather simple, aren't they?

References I

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic Differentiation Variational Inference. *Journal* of Machine Learning Research, 18(14):1–45, 2017. ISSN 1533-7928. URL http://jmlr.org/papers/v18/16-107.html.